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Abstract: In this paper, we have been considered quintom model of dark energy by two non-
interacting potentials as V (ϕ, χ) = V1(ϕ) + V2(χ). The fields of ϕ and χ are introduced as
quintessence and phantom fields respectively. We have also used double-sine-Gordon potential
for quintessence field and triple-sine-Gordon potential for phantom field. The condition for the
accelerated expansion of universe is obtained by equation of state (EoS). Thus we have showed
that EoS parameter crossing of value -1. Finally we have plotted the corresponding graphs
such as fields, the EoS parameter and potential in terms of time evolution. The investigation of
bouncing universe condition will be interesting problem in future.
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1. INTRODUCTION

In recent decade, cosmological observations revealed a
positive accelerating expansion of universe by SNe Ia
(Riess et al. (1998) and Perlmutter et al. (1999)), WMAP
(Bennett et al. (2003) and Spergel et al. (2003)) SDSS
(Seljak et al. (2005)), Chandra X-ray observatory (Allen
et al. (2005)) and so on. This cosmic acceleration represent
a mysterious energy that called dark energy. We note
that equation of state (EoS), i.e., pressure proportional
to energy density can describe dark energy model during
the evolution of the universe. In that case the EoS tend to
value −1 in which one corresponds to astrophysical data.
So that we know the problem of dark energy, accelerated
expansion of the universe based on one or more dynamic
scalar field described. For the EoS (ω) less than −1 the
phantom dark energy (Caldwell (2002), Nojiri et al.
(2003), Wei et al. (2004)) is observed, and for −1 <
ω < − 1

3 the dark energy is described by quintessence
(Ratra et al. (1988), Wetterich (1988), Caldwell et al.
(1998)). We realize the properties of dark energy from
recent observations with ω crossing -1 in the near past.
Meanwhile for the phantom model of dark energy which
has the opposite sign of the kinetic term compared with the
quintessence in the Lagrangian. Neither the quintessence
nor the phantom alone can fulfill the transition from
ω > −1 to ω < −1 and vice versa. But one can show that
considering the combination of quintessence and phantom
in a joint model, the transition can be fulfilled. This model,
called quintom (Feng et al. (2005), Guo et al. (2005),
Setare et al. (2008)), can produce a better fit to the data
than more familiar models with ω ≥ −1.

So far, a large class of scalar field dark energy models have
been studied, including quintessence, phantom, quintom,
tachyon (Sen (2002), Padmanabhan (2002)), K-essence
(Armendariz-Picon et al (2000)) and so on. But we should
note that the mainstream viewpoint regards the scalar
field dark energy models as an effective description of
an underlying theory of dark energy. In addition, other
proposals on dark energy include interacting dark energy
models (Zhang (2005)), braneworld models (Deffayet
et al (2002)) and etc. Anyway we note that almost these
models are determined from the phenomenology without
theoretical root.
In order to see ω crossing to −1, we will need to introduce
a potential as functional of scalar fields. Therefore we
choose a combination of potentials as double-Sine-Gordon
(DSG) and triple-Sine-Gordon (TSG), by motivated this
potential describe the quintom model. The normal Sine-
Gordon equation has been shown in different systems such
as condensed matter, quantum optics, and particle physics.
In this paper we use DSG potential for canonical field
(quintessence) and TSG potential for non-canonical field
(phantom). Also the quintom potential is taken by non-
interacting potential as the following form,

V (ϕ, χ) = V (ϕ) + V (χ), (1)

where V (ϕ) and V (χ) are functional of quintessence field
and phantom field respectively. The mentioned quintom
potential is written separably as DSG and TSG potentials
by,

V (ϕ) = 1 + α− cos(ϕ)− α cos(2ϕ),
V (χ) = 1 + β − cos(χ)− β cos(3χ),

(2)



where α and β are a constant. These potentials reduce to
the ordinary Sine-Gordon potential in the limit α → 0 and
β → 0.
In the present paper, we suggest a quintom potential
by adding DSG and TSG potentials. We show that this
potential can describe quintom model of dark energy with
ω crossing to −1.

2. THE QUINTOM MODEL OF DARK ENERGY

The quintom model of dark energy is a good scenario and
one can explain the new astrophysical data for ω crossing
to−1, i.e. transition from quintessence dominated universe
to phantom dominated universe. Here we consider the spa-
tially flat Friedman-Robertson-Walker (FRW) universe,
where has following space-time metric,

ds2 = dt2 − a(t)2(dr2 + r2dΩ), (3)

where a(t) is scale factor. The below action is introduced
for quintom model that containing the normal scalar field
ϕ and negative kinetic scalar field chi.

s =

∫
d2x

√
−g

[
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4
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1
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we are using 4πG = 1. The energy density and the pressure
of the scalar fields can be written respectively by,

ρ =
1

2
ϕ̇2 − 1

2
χ̇2 + V, p =

1

2
ϕ̇2 − 1

2
χ̇2 − V. (5)

The equation of motion for two scalar fields in FRW model
will have the following form,

ϕ̈+ 3Hϕ̇+ Vϕ = 0, χ̈+ 3Hχ̇− Vχ = 0 . (6)

The EoS can be written as,

ω=
p

ρ
=− 1− 2

3

Ḣ

H2
=

ϕ̇2 − χ̇2 − 2V

ϕ̇2 − χ̇2 + 2V
, (7)

in here we will see that for ϕ̇ > χ̇, ω ≥ −1 and for ϕ̇ < χ̇,
we will have, ω < −1.
By using Einstein equation (Rµν − 1

2gµνR = 2Tµν) and
energy-momentum tensor (T ν

µ = diag (ρ,−p,−p,−p)), we
achieve the following Friedman’ equations as,

H2=
1

3

(
ϕ̇2 − χ̇2

)
+

2

3
V, Ḣ = −

(
ϕ̇2 − χ̇2

)
. (8)

Also we can obtain potential as,

V =
1

2

[
3H2 + Ḣ

]
. (9)

Now we can apply the above equations for DSG and TSG
potentials.

3. DARK ENERGY WITH DSG AND TSG
POTENTIALS

Here we consider quintom model of dark energy with DSG
and TSG potentials. In order to describe dark energy

Fig. 1. Plot of the EoS with respect to time evolution.

Fig. 2. Plots of the Hubble parameter and scale factor with
respect to time evolution.

Fig. 3. Plots of the fields ϕ and χ, and corresponding
potentials with respect to time evolution.

by quintom model, we should see to cross ω to −1. By
inserting Eq. (2) into Eqs. (6) we get,

ϕ̈+ 3Hϕ̇+ sin(ϕ) + 2α sin(2ϕ) = 0,
χ̈+ 3Hχ̇− sin(χ)− 3β sin(3χ) = 0 .

(10)

Now by numerical solution Eqs. (8) and (10) and choosing
ϕ(0) = 0.25, χ(0) = 0.5, ϕ′(0) = 0.75 and χ(0) = 0.1, we
can draw the EoS, fields, potentials and Hubble parameter
with respect to time evolution. In Fig. 1, we can see various
of the EoS in terms of time evolution for some choice of
parameters and one shows that ω crosses of −1.

In Fig. 2 we plot H(t) and a(t) for some choice of
parameters. Various of the Hubble parameter confirms
Ḣ > 0 in which one satisfies condition ϕ̇2− χ̇2 < 0, i.e., we



will have ω < −1. Also Various of the scale factor shows us
accelerated expanding of universe. The Fig. 3 shows ϕ(t),
χ(t) and V (t).

4. CONCLUSION

In this study, the accelerated expansion of the universe
took the help of real scalar fields by procedure of quintom
model. We have taken DSG and TSG potentials in this
model and we have showed the accelerated expansion of
the universe by the parameter equation of state and we
saw crossing the line separator phantom. Therefore we can
say that DSG and TSG potentials are a good answer for
this model.
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